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BAYESIAN ESTIMATION 

Until now discussion about estimation has assumed a frequentist approach, namely: 

o The parameter of the population distribution is unknown but fixed (not random); 

o The inference procedures are based not only on the observed sample but also on the population of 

samples that could have been observed. 

o The Bayesian approach assumes that our lack of knowledge about the parameters value should be 

translated using probability distributions (consequently unknown parameters are treated as random 

variables) and that only the observed data (and not the population of samples) is relevant to make 

statistical inference. 
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Prior distribution 

o Definition 15.1 – The prior distribution is a probability distribution over the space of possible parameter 

values. It is denoted ( )π θ  and represents our opinion concerning the relative chances that various 

values of θ  are the true value of the parameter. 

o Comments: 

o The existence of a prior for θ  (scalar or vector) is the core of Bayesian inference. From a theoretical 

point of view it raises important questions about the concept of probability.  

o From a practical point of view, the determination of the prior is a major problem of Bayesian 

methods. In many situations we have some insights about possible parameter values but the main 

difficulty is translating this knowledge into a probability distribution.  

o Due to the difficulty of finding a prior, we often use an improper prior distribution (vague prior) or 

we take advantage of conjugate priors. 
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o Definition 15.2 – An improper prior distribution is one for which the probabilities (or probability 

density function) are nonnegative but their sum (integral) is infinite. 

o Comments: 

o The improper prior is one possible solution when we have minimal knowledge about the parameter 

behavior.  

o Universal agreement on the best way to construct a vague (or non-informative) prior does not exist. 

o However the use of the improper prior ( ) 1/π θ θ= , 0>θ  as a vague prior for a scale parameter is 

quite consensual.  

o Definition 15.17 – A prior distribution is said to be a conjugate prior distribution for a given model if the 

resulting posterior distribution is from the same family as the prior (but perhaps with different 

parameters). 
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Model distribution 

• Theoretical model for the population: for instance Bernoulli, normal, …. 

• Instead of considering a random sample ( )1 2, , , nX X X=X L   – usually the sampling process 

generates i.i.d. observations  – we only look at the observed sample ( )1 2, , , nx x x=x L  

• Definition 15.3 – The model distribution is the probability distribution for the data as collected given 

a particular value for the parameter. Note that this matches definition 13.4 for the likelihood 

function. However, consistent with Bayesian notion, the model pdf is denoted | ( | )f θΘX
x , where 

vector notation for x  is used to remind us that all the data appear here.  

• Comments:  

o If the observations are i.i.d., then | | 11
( | ) ( | ) ( | )

n

i
L f f xθ θ θΘ Θ=

= = ∏X X
x x . 

o Only the likelihood of the observed sample is relevant 
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 Bayes Theorem: How to obtain the posterior distribution? 

o Definition 15.6 – The posterior distribution is the conditional probability distribution of the parameters, 

given the observed data. It is denoted )|(| x
X

θπ Θ . 

o Theorem 15.8 – (Part a) The posterior distribution can be computed as 
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o Comment:  

o This is the central purpose of Bayesian analysis: The posterior distribution represents our believes 

about θ  once the sample has been observed (and for a given prior).  

o In most situations we determine the posterior up to a normalizing constant. This constant can be 

determined using the condition | ( | ) 1dπ θ θΘ =∫ X
x  but it is obtained more easily when the posterior 

belongs to a known family of distributions. In such cases we identify the core of the family and then 

we get the constant (using for instance Appendix A or B of the book). 

o Remember Bayes’s formula: Partition { }1 2, ,A A L , event B , then 
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The predictive distribution 

o Definition 15.7 – The predictive distribution is the conditional distribution of a new observation y  given 

the data x . It is denoted | ( | )Yf y
X

x  

o Theorem 15.8 – (Part b) The predictive distribution can be computed as 

∫ ΘΘ= θθπθ dyfyf YY )|()|()|( ||| xx
XX

 

Where | ( | )Yf y θΘ is the pdf of the new observation, given the parameter value. 

Other definitions (less important) 

o Definition 15.4 – The joint distribution has pdf  
,

( | ) ( )f θ π θΘ ×
X

x  

o Definition 15.5 – The marginal distribution of x  has pdf ,( ) ( | ) ( )f f dθ π θ θΘ= ×∫X X
x x  
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Example 15.1 – The following amounts were paid on a hospital liability policy  

125  132  141  107  133  319  126  104  145  223. 

The amount of a single payment has the single-parameter Pareto distribution with 100θ =  and α  

unknown. The prior is a gamma distribution with parameters  2=α  and 1=θ . Determine all of the 

relevant Bayesian quantities. 
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2 1 /1

2
( )

(2) 1

e
e

α
αα

π α α
− −

−= =
Γ

, 0>α   This means that ~ (2,1)α γ , ( ) var( ) 2E α α= =  

Likelihood:  

11 1

10 1010 10 10

101 1

1

100
( | ) ( | ) 100

100 1 1
0.022346 0.022346

n n

i ii i
i

i i
i i ii

L f x x
x

x x x

α

α

α
α α

α

α
α α

α α α

+= =

= =

=

= = >

   
= = × × ∝ ×   

   

∏ ∏

∏ ∏
∏

x

 

 

 

 



 

8 

 

 

Posterior:  
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We get the core of a gamma distribution with parameters 12 and 1/4.80112 and then we know that 

the normalizing constant is 
124.80112 / (12) 3.757995Γ = . As the posterior belongs to the same 

family of the prior we said that we are using a conjugate prior for this model. 

The point here is that the observed samples leads us to change our believes about α  from a (2,1)γ  

to a (12,0.20828)γ  and now ( | ) 2.49942E α =x  and var( | ) 0.52059α =x .  

We can draw both densities on the same graph to visualize the differences: 

> x=seq(0,6,by=0.2) 

> plot(x,dgamma(x,shape=1,scale=1),type="l",ylab="density",xlab="alpha") 

> y=dgamma(x,shape=12,scale=0.208285) # posterior 

> lines(x,y,type="l",lty=2) 

> text(3.5,0.45,"posterior"); text(0.8,0.7,"prior")
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Predictive: 
11 /0.20828

| | | 1 120 0

12 4.801121 ln100 ln

12 0

12 (0.195951 ln )

12 0

100
( | ) ( | ) ( | )

(12) 0.20828

1

(12) 0.20828

1
100

(12) 0.20828

Y Y

y

y

e
f y f y d d

y

e d
y

e d y
y

α α

α

α α α

α

α α
α π α α α

α α

α α

−
∞ ∞

Α Α +

∞ − + −

∞ − +

= =
Γ

=
Γ

= >
Γ

∫ ∫

∫

∫

X X
x x

 

The integrand is the core of a gamma density function with parameters 13 and 1/ (0.195951 ln )y+ . 

Then we can use the usual normalizing constant to calculate the integral. We get 
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The density does not look familiar but it can be proved that ln ln100Y − has a Pareto distribution. 
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> y=seq(100,400,by=20) 

> yy1=2*(y^(-1))*((1+log(y/100))^(-3)); 

> plot(y,yy1,type="l",ylab="predictive density",xlab="y") 

> yy2=3.757995*factorial(12)*(y^(-1))*((0.195951+log(y))^(-13)); 

> lines(y,yy2,type="l",lty=2) 

> text(130,0.005,"before"); text(150,0.010,"after") 
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Bayesian inference and prediction 

From a Bayesian point of view the analysis is complete when we specify the posterior distribution which 

quantifies our knowledge about θ  after the observation of the sample. However, for practical purposes 

point estimation and/or “confidence interval” are, most of the time, needed. The problem is how to sum 

up a distribution in one point or using an interval. For point estimation the usual Bayesian solution is to use 

a loss function. 

o Definition 15.9 – A loss function ),ˆ( jjjl θθ describes the penalty paid by the investigator when ˆ
jθ  is the 

estimate and jθ  is the true value of the jth parameter. 

o Comment: The loss function is random since it depends on jθ . 

o Definition 15.10 – The Bayes estimate for a given loss function is the one that minimizes the expected 

loss, given the posterior distribution of the parameter in question. 

o Definition 15.11 – For squared-error loss, the loss function is (all subscripts are dropped for 

convenience) 
2)ˆ(),ˆ( θθθθ −=l . For absolute loss it is ˆ ˆ( , )l θ θ θ θ= − . For zero-one loss it is 0),ˆ( =θθl  if 

θθ =ˆ  and 1 otherwise.  

o Comment: Strictly speaking, Definition 13.17 defines the loss functions up to a multiplicative constant. 
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o Theorem 15.12 – For squared-loss, the Bayes estimate is the mean of the posterior distribution; for 

absolute loss it is the median and for zero-one loss it is the mode. 

Challenging question: Prove the theorem for the squared loss function (easier) and other functions. □ 

o Comments:  

o There is no guarantee that the posterior’s mean exists (or the mode) or that the median is unique. 

o When no otherwise specified, the term Bayes estimate refers to the posterior mean (squared-loss 

function). 

o Example 15.3 – Determine the three estimates of α  (example 15.1 continued) 

The posterior is a gamma distribution with parameters 12 and 0.20828. Then ( | ) 2.49942E α =x , the 

mode is  11 0.20828 2.291132× =  and the median has to be determined numerically (2.430342). 

o Sometimes the expected value of the predictive distribution is of interest. We can calculate it using the 

predictive and it can be shown that | |( | ) ( | ) ( | ) ( | )YE Y y f y dy E Y dπ θ θ θΘ= =∫ ∫X X
x x x  (see Loss 

Models). 
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Bayesian HPD credibility set 

o Definition 15.13 – The points a b<  define a )%1(100 α−×  credibility interval for jθ , provided that 

( ) αθ −≥≤≤ 1Pr ba j .  

o Comments: 

o The term credibility is used to underline the differences between the frequentist (confidence 

interval) and the Bayesian approaches. This term has no relation with credibility theory.  

o The inequality is due to discrete distribution 

o Definition 15.19 does not produce a unique solution for the credibility interval. Usually we look for 

the shortest interval. 

o Theorem 15.14 – If the posterior random variable x|jθ  is continuous and unimodal, then the 

100 (1 )α× −  credibility interval with the smallest width, ab − , is the unique solution to 

αθθπ −=∫ Θ 1)|(|

b

a
j d

j
x

X
 and  | |( | ) ( | )

j j
b aπ πΘ Θ=

X X
x x   

This interval is a special case of a highest posterior density (HPD). 

o Comment: The posterior cannot have any local maximum except the mode which is unique. 



 

15 

 

o Example 15.5 – Determine the shortest 95% credibility interval for the parameter α  (example 15.1 

continued) 

Let us use EXCEL’s solver to determine the interval 

 

In cells C4 and D4 we put two initial values for the limits of the interval 

In cells C5 and D5 we compute the value of the distribution function at points a and b respectively  

(GAMMA.DIST(C4;C1;D1;1) for C5). Cell B5 contains the probability of the interval. 

In cells C6 and D6 we calculate the value of the posterior density function at points a and b respectively 

(GAMMA.DIST(C4;C1;D1;0) for C6). Cell B6 contains the difference between the density at point b and 

the density at point a. 



 

16 

 

Now we want to get the value 1 0.95α− =  in cell B5 and the value 0 in cell B6. 

 

 

 

The credibility interval is then (1.1832009; 3.93840632). If needed we can add more constraints. 

To get an approximate solution we can place a probability of 0.025 at each end → (1.29148; 4.09947). 
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o Definition 15.15 – For any posterior distribution the 100 (1 )α× − % HPD credibility set is the set of 

parameter values C such that αθ −≥∈ 1)Pr( Cj  and { }cC jj j
≥= Θ )|(: | x

X
θπθ  for some c, where c is 

the largest value for which the previous inequality holds. 

o Comment: The credibility set may be the union of several intervals if the posterior is a multimodal 

distribution. If the distribution is unimodal we get the HPD interval. 

o Sometimes computing posterior probabilities is difficult but computing posterior moments is easier. We 

can them using the Bayesian central limit theorem. 

o Theorem 15.16 – Bayesian central limit theorem – If ( )π θ  and )|(| θxf ΘX
 are both twice differentiable 

in the elements of θ  and other commonly satisfied assumptions hold, then the posterior distribution of 

Θ  given =X x  is asymptotically normal. 

o Comment: The “commonly satisfied assumptions” are like those presented with Theorem 15.5 
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o Example 15.6 – Construct a 95% credibility interval for α  using the Bayesian central limit theorem 

(example 15.1 continued). 

The posterior is (12,0.20828)γ  and then ( | ) 2.49942E α =x  and var( | ) 0.52059α =x . The credibility 

interval is then 2.49942 1.96 0.52059± × ,i.e. (1.085238, 3.913594). Note that the method is not 

appropriate for this example as the sample size is far from large. 

Alternatively, we can replace the mean of the posterior by the mode and/or we can use minus the 

inverse of the 2
nd

 derivative of the log of the posterior to compute the variance. 

In our example: Mode → 2.291132  

Log of the posterior: |ln ( | ) ln (12) 12ln 0.20828 11ln / 0.20828απ α α α= − Γ − + −
X

x  

1
st

 derivative  |

11 1
ln ( | )

0.20828

d

d
απ α

α α
= −

X
x  

2
nd

 derivative 
2

|2 2

11
ln ( | )

d

d
απ α

α α
= −

X
x  

Variance to be used →
2

11

α
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Appendix 8 – Bayesian Estimation 

 

Proof that, using the squared loss function, the Bayes estimator is the mean of the posterior 

We want to minimize ( ) ( )
2
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ˆ( ) 2z θ′′ =  

Then the minimizer is given by ( )ˆ |E xθ θ=  

Proof that, using the absolute loss function, the Bayes estimator is the median of the posterior 

We want to minimize ( )ˆ ˆ( ) |z x dθ θ θ π θ θ
+∞

−∞
= −∫ ^ 
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( )ˆ ˆ( ) 2 | 0z xθ π θ′′ = >  

Then the minimizer is given by ( ) ( )
ˆ ˆ

2 | 1 | 1 / 2x d x d
θ θ

π θ θ π θ θ
−∞ −∞

= ⇔ =∫ ∫ , i.e. θ̂  is the median of the 

posterior 
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Proof that, using the 0-1 loss function, the Bayes estimator is the mode of the posterior 

( )
ˆ0

ˆ,
ˆ1

θ θ
θ θ

θ θ

 =
= 

≠
l  

Let us define a 0-1 loss function in a neighborhood of θ . ( )
( )

ˆ0
ˆ* ,

ˆ1 ,

θ ε θ θ ε
θ θ

θ θ ε θ ε

 − ≤ ≤ +
= 

∉ − +
l  

Let us define ( ) ( )ˆ ˆ( ) 1 , |z x d
θ ε

ε θ ε
θ θ θ π θ θ

+

+
= − ∫ l  

We want to minimize 
0

ˆlim ( )zε
ε

θ
→

 

When 0ε → , ( )ˆ ˆ( ) 1 | 2z xε θ π θ ε≈ − ×  and then the minimizer of ˆ( )zε θ  is the maximize of ( )ˆ | xπ θ , 

i.e. the mode of the posterior. 

 


